52 research outputs found

    Spatiotemporal subpixel mapping of time-series images

    Get PDF
    Land cover/land use (LCLU) information extraction from multitemporal sequences of remote sensing imagery is becoming increasingly important. Mixed pixels are a common problem in Landsat and MODIS images that are used widely for LCLU monitoring. Recently developed subpixel mapping (SPM) techniques can extract LCLU information at the subpixel level by dividing mixed pixels into subpixels to which hard classes are then allocated. However, SPM has rarely been studied for time-series images (TSIs). In this paper, a spatiotemporal SPM approach was proposed for SPM of TSIs. In contrast to conventional spatial dependence-based SPM methods, the proposed approach considers simultaneously spatial and temporal dependences, with the former considering the correlation of subpixel classes within each image and the latter considering the correlation of subpixel classes between images in a temporal sequence. The proposed approach was developed assuming the availability of one fine spatial resolution map which exists among the TSIs. The SPM of TSIs is formulated as a constrained optimization problem. Under the coherence constraint imposed by the coarse LCLU proportions, the objective is to maximize the spatiotemporal dependence, which is defined by blending both spatial and temporal dependences. Experiments on three data sets showed that the proposed approach can provide more accurate subpixel resolution TSIs than conventional SPM methods. The SPM results obtained from the TSIs provide an excellent opportunity for LCLU dynamic monitoring and change detection at a finer spatial resolution than the available coarse spatial resolution TSIs

    The effect of the point spread function on sub-pixel mapping

    Get PDF
    Abstract Sub-pixel mapping (SPM) is a process for predicting spatially the land cover classes within mixed pixels. In existing SPM methods, the effect of point spread function (PSF) has seldom been considered. In this paper, a generic SPM method is developed to consider the PSF effect in SPM and, thereby, to increase prediction accuracy. We first demonstrate that the spectral unmixing predictions (i.e., coarse land cover proportions used as input for SPM) are a convolution of not only sub-pixels within the coarse pixel, but also sub-pixels from neighboring coarse pixels. Based on this finding, a new SPM method based on optimization is developed which recognizes the optimal solution as the one that when convolved with the PSF, is the same as the input coarse land cover proportion. Experimental results on three separate datasets show that the SPM accuracy can be increased by considering the PSF effect

    The effect of the point spread function on sub-pixel mapping

    Get PDF
    Abstract Sub-pixel mapping (SPM) is a process for predicting spatially the land cover classes within mixed pixels. In existing SPM methods, the effect of point spread function (PSF) has seldom been considered. In this paper, a generic SPM method is developed to consider the PSF effect in SPM and, thereby, to increase prediction accuracy. We first demonstrate that the spectral unmixing predictions (i.e., coarse land cover proportions used as input for SPM) are a convolution of not only sub-pixels within the coarse pixel, but also sub-pixels from neighboring coarse pixels. Based on this finding, a new SPM method based on optimization is developed which recognizes the optimal solution as the one that when convolved with the PSF, is the same as the input coarse land cover proportion. Experimental results on three separate datasets show that the SPM accuracy can be increased by considering the PSF effect

    Water bodies' mapping from Sentinel-2 imagery with Modified Normalized Difference Water Index at 10-m spatial resolution produced by sharpening the swir band

    Get PDF
    Monitoring open water bodies accurately is an important and basic application in remote sensing. Various water body mapping approaches have been developed to extract water bodies from multispectral images. The method based on the spectral water index, especially the Modified Normalized Difference Water Index (MDNWI) calculated from the green and Shortwave-Infrared (SWIR) bands, is one of the most popular methods. The recently launched Sentinel-2 satellite can provide fine spatial resolution multispectral images. This new dataset is potentially of important significance for regional water bodies' mapping, due to its free access and frequent revisit capabilities. It is noted that the green and SWIR bands of Sentinel-2 have different spatial resolutions of 10 m and 20 m, respectively. Straightforwardly, MNDWI can be produced from Sentinel-2 at the spatial resolution of 20 m, by upscaling the 10-m green band to 20 m correspondingly. This scheme, however, wastes the detailed information available at the 10-m resolution. In this paper, to take full advantage of the 10-m information provided by Sentinel-2 images, a novel 10-m spatial resolution MNDWI is produced from Sentinel-2 images by downscaling the 20-m resolution SWIR band to 10 m based on pan-sharpening. Four popular pan-sharpening algorithms, including Principle Component Analysis (PCA), Intensity Hue Saturation (IHS), High Pass Filter (HPF) and à Trous Wavelet Transform (ATWT), were applied in this study. The performance of the proposed method was assessed experimentally using a Sentinel-2 image located at the Venice coastland. In the experiment, six water indexes, including 10-m NDWI, 20-m MNDWI and 10-m MNDWI, produced by four pan-sharpening algorithms, were compared. Three levels of results, including the sharpened images, the produced MNDWI images and the finally mapped water bodies, were analysed quantitatively. The results showed that MNDWI can enhance water bodies and suppressbuilt-up features more efficiently than NDWI. Moreover, 10-m MNDWIs produced by all four pan-sharpening algorithms can represent more detailed spatial information of water bodies than 20-m MNDWI produced by the original image. Thus, MNDWIs at the 10-m resolution can extract more accurate water body maps than 10-m NDWI and 20-m MNDWI. In addition, although HPF can produce more accurate sharpened images and MNDWI images than the other three benchmark pan-sharpening algorithms, the ATWT algorithm leads to the best 10-m water bodies mapping results. This is no necessary positive connection between the accuracy of the sharpened MNDWI image and the map-level accuracy of the resultant water body maps

    Enhancing spectral unmixing by considering the point spread function effect

    Get PDF
    The point spread function (PSF) effect exists ubiquitously in real remotely sensed data and such that the observed pixel signal is not only determined by the land cover within its own spatial coverage but also by that within neighboring pixels. The PSF, thus, imposes a fundamental limit on the amount of information captured in remotely sensed images and it introduces great uncertainty in the widely applied, inverse goal of spectral unmxing. Until now, spectral unmixing has erroneously been performed by assuming that the pixel signal is affected only by the land cover within the pixel, that is, ignoring the PSF. In this paper, a new method is proposed to account for the PSF effect within spectral unmxing to produce more accurate predictions of land cover proportions. Based on the mechanism of the PSF effect, the mathematical relation between the coarse proportion and sub-pixel proportions in a local window was deduced. Area-to-point kriging (ATPK) was then proposed to find a solution for the inverse prediction problem of estimating the sub-pixel proportions from the original coarse proportions. The sub-pixel proportions were finally upscaled using an ideal square wave response to produce the enhanced proportions. The effectiveness of the proposed method was demonstrated using two datasets. The proposed method has great potential for wide application since spectral unmixing is an extremely common approach in remote sensing

    A Geostatistical Filter for Remote Sensing Image Enhancement

    Get PDF
    In this paper, a new method was investigated to enhance remote sensing images by alleviating the point spread function (PSF) effect. The PSF effect exists ubiquitously in remotely sensed imagery. As a result, image quality is greatly affected, and this imposes a fundamental limit on the amount of information captured in remotely sensed images. A geostatistical filter was proposed to enhance image quality based on a downscaling-then-upscaling scheme. The difference between this method and previous methods is that the PSF is represented by breaking the pixel down into a series of sub-pixels, facilitating downscaling using the PSF and then upscaling using a square-wave response. Thus, the sub-pixels allow disaggregation as an attempt to remove the PSF effect. Experimental results on simulated and real data sets both suggest that the proposed filter can enhance the original images by reducing the PSF effect and quantify the extent to which this is possible. The predictions using the new method outperform the original coarse PSF-contaminated imagery as well as a benchmark method. The proposed method represents a new solution to compensate for the limitations introduced by remote sensors (i.e., hardware) using computer techniques (i.e., software). The method has widespread application value, particularly for applications based on remote sensing image analysis

    Fusion of Sentinel-2 images

    Get PDF
    Sentinel-2 is a very new programme of the European Space Agency (ESA) that is designed for fine spatial resolution global monitoring. Sentinel-2 images provide four 10 m bands and six 20 m bands. To provide more explicit spatial information, this paper aims to downscale the six 20 m bands to 10 m spatial resolution using the four directly observed 10 m bands. The outcome of this fusion task is the production of 10 Sentinel-2 bands with 10 m spatial resolution. This new fusion problem involves four fine spatial resolution bands, which is different to, and more complex than, the common pan-sharpening fusion problem which involves only one fine band. To address this, we extend the existing two main families of image fusion approaches (i.e., component substitution, CS, and multiresolution analysis, MRA) with two different schemes, a band synthesis scheme and a band selection scheme. Moreover, the recently developed area-to-point regression kriging (ATPRK) approach was also developed and applied for the Sentinel-2 fusion task. Using two Sentinel-2 datasets released online, the three types of approaches (eight CS and MRA-based approaches, and ATPRK) were compared comprehensively in terms of their accuracies to provide recommendations for the task of fusion of Sentinel-2 images. The downscaled ten-band 10 m Sentinel-2 datasets represent important and promising products for a wide range of applications in remote sensing. They also have potential for blending with the upcoming Sentinel-3 data for fine spatio-temporal resolution monitoring at the global scale

    Enhancing Spatio-Temporal Fusion of MODIS and Landsat Data by Incorporating 250 m MODIS Data

    Get PDF
    Spatio-temporal fusion of MODIS and Landsat data aims to produce new data that have simultaneously the Landsat spatial resolution and MODIS temporal resolution. It is an ill-posed problem involving large uncertainty, especially for reproduction of abrupt changes and heterogeneous landscapes. In this paper, we proposed to incorporate the freely available 250 m MODIS images into spatio-temporal fusion to increase prediction accuracy. The 250 m MODIS bands 1 and 2 are fused with 500 m MODIS bands 3-7 using the advanced area-to-point regression kriging approach. Based on a standard spatio-temporal fusion approach, the interim 250 m fused MODIS data are then downscaled to 30 m with the aid of the available 30 m Landsat data on temporally close days. The 250 m data can provide more information for the abrupt changes and heterogeneous landscapes than the original 500 m MODIS data, thus increasing the accuracy of spatio-temporal fusion predictions. The effectiveness of the proposed scheme was demonstrated using two datasets
    corecore